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ABSTRACT 

Cooperative decentralized control of autonomous vehicles continues to be an important research 

subject for many military and civilian applications. Vehicles can communicate with each other 

and exchange information about their relative positions, target, environment, and use that data to 

develop decentralized but coordinated control policies. Communication is often represented by 

an information graph, and information exchange is modeled by a discrete-time dynamical 

system, known as the information loop.  When the vehicles all agree on the information state it is 

said that they have reached an information “consensus,” which is equivalent to conditional 

stability of the information loop.  Often consensus control is slow to converge or easily 

destabilized. Being able to assess the quality of communication topologies (information graphs) 

is critical to determining the quality of a consensus solution.   

In this work a topological manifold approach for representing complex networks of dynamical 

entities is shown to be an effective way to represent non-entropic measures of information as low 

dimensional embeddings in a high dimensional lifted space. A 2 dimensional embedding 

(stability margin - convergence rate) was developed that demonstrates an efficient frontier of 

graph topologies that dominate all others in their ability to reject disturbances and converge 

rapidly to a consensus.  

  



 

 
 

 
 

 

TABLE OF CONTENTS 

 
ABSTRACT .................................................................................................................................... 2 

TABLE OF CONTENTS ................................................................................................................ 3 

Introduction ..................................................................................................................................... 4 

Convergence Rate. .......................................................................................................................... 7 

Stability Margin .............................................................................................................................. 9 

Pareto Framework. ........................................................................................................................ 10 

Results. .......................................................................................................................................... 11 

Publications ................................................................................................................................... 14 

DISTRIBUTION LIST ................................................................................................................. 15 

  



 

 
 

 
 

 

Introduction 

The study of information dynamics is important for understanding complex networks of 

dynamical systems with information flows and shared or coordinated control policies.  

Information dynamics is essentially the study of information flows in a network when modeled 

as a discrete-time dynamical system.    Control policies that shape the dynamics of the 

information flows in-turn shape the system dynamics of the physical entities within the network 

(e.g. formations, shared tasks).  Vehicle communication is often represented by a communication 

or information graph, and because of possible delays in information processing and transmission, 

information exchange is modeled by a discrete-time dynamical system, known as the information 

loop.  Ensuring desired stability and convergence properties of the information loop is critical to 

efficient performance of a cooperative system. When the vehicles all agree on the information 

state it is said that they have reached an information “consensus”    

Optimizing the convergence rate of the information flow in consensus problems for various 

networks has long been an active research venue. On the other hand, stability of information 

flow in application to cooperative control of vehicle formation was comprehensively 

investigated, and a general method for deriving transfer functions for closed-loop multi-agent 

systems was recently suggested. However, often improvements of the convergence rate lead to 

degrading stability and vice-versa.  Both stability and convergence are important characteristics 

of the information flow and should be analyzed together. This work develops an optimization 

framework for stability and convergence of the information flow in cooperative systems and also 

investigates the impact of the topology of the communication graph on the stability margin and 

convergence rate.  The set of all graphs that that dominate all others in their ability to reject 



 

 
 

 
 

 

disturbances and converge rapidly to a consensus was computed.  This set is the efficient frontier 

or Pareto solution set.  A high dimension “information space” may be constructed such that a 

point in this space corresponds to one possible graph and all possible graphs on n-nodes spans 

the space.  The Pareto solution set is shown to be a 2 dimensional manifold on the information 

space.  

The problem to be addressed is formulated as follows. Suppose there are n vehicles in a 

cooperative system.  Let vector xi=(xi1,…,xim)T determine position of vehicle i in m-dimensional 

space, and let X = (x1,…,xn) be an  m×n matrix describing position of the whole system. 

Communication in the system is represented by a directed communication graph G=(V,E) with V 

and E being the sets of vertices and edges, respectively, where node i represents vehicle i and the 

edge from i to j shows that vehicle j receives information from vehicle i (or “watches” vehicle i). 

Let Ni be the set of outgoing edges of vertex i with |Ni| the cardinality of Ni. The normalized 

adjacency matrix G and the normalized Laplacian L of G are defined as follows: 

 

where I is the identity matrix. 

Let yk = (y1k, . . . ,ynk) be an error vector, in which component yik represents the error between 

an internal state measurement of vehicle i and a time-varying offset function hi(k) relative to an 

arbitrary reference at time mo ment t =tk. For example, yik = ||Cxi(k)−hi(k)||, where C is a matrix 

and xi(k) is the position of vehicle i at t = tk. Also, let vector pk denote information transmitted 



 

 
 

 
 

 

to the vehicles at t = tk. The information flow in the cooperative system can be represented by a 

discrete-time linear dynamical system (information loop) 

  

(1) 

 

with qk = 0 for k = −M, . . . , 0; see [7]. 

We pose the following questions: 

(i) Given a communication graph G, what is the best possible convergence rate for the 

information loop in (1)? 

(ii) Given a communication graph G, what is the tradeoff between the convergence rate and 

stability margin as a function of the information control gains aj ,bj , j = 0, . . . ,M? 

(iii) Given a finite set of graphs on “n” vertices, what is the best topology of the communication 

graph G with respect to both the convergence rate and stability margin? Find an ordering of these 

graphs, from best to worst, that illustrates how some graphs can dominate others.  
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Convergence Rate. 

Conditional convergence for a discrete LTI system is given as follows: G has exactly 1 

eigenvalue λ1=1 with eigenvector 1N , all other eigenvalues are strictly within the unit disk.  

Conditional convergence is equivalent to “consensus” for an LTI information dynamical system.   

 

 

 

 

Define the block diagonal matrix 

 

 

(2) 

  

 

If Q meets conditional stability (simple eigenvalue of 1, all others within unit disk) then p* is 

guaranteed to converge to 

 

     

 

Now define generalized convergence rate as: 

(3) 
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which has exact expressions for low order (M=0 or 1) controllers but becomes intractable for 

higher orders (however, it is conjectured that higher order controllers would have limited 

additional benefit). For instance, for M=0 

 (4) 

The maximal convergence ε* can be found over all strongly connected graphs by solving a 

quadratic optimization program.  It was also proven that only the complete graph has the fastest 

convergence, ε=1. 

  



 

 
 

 
 

 

Stability Margin 

To obtain a measure of stability margin without resorting to gain and phase margins, we first 

obtain a closed loop transfer function by taking Z-transform as: 

 

 

 

The open loop (forward path) transfer function is then: 

 

Now compute the inverse of the sensitivity function (defined as the magnitude of this vector 

from -1 to the closest point on the Nyquist curve plotted for the open loop transfer function): 

 

From this the stability margin is defined as: 

 

(5) 

Which again is easily computed for low order controllers (M=0,1,2) but not so easily for higher 

orders.  For example, for M=0, 
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Pareto Framework. 

Now we turn to constructing the 2-dimensional manifold or efficient frontier of convergence rate 

and stability margin.  For a graph G, we can formulate the following constrained optimization 

problem: 

 

Which has a solution that optimizes controller gains aj and bj to find the maximal stability 

margin δ∗G(ε) for ε ∈ (0,ε∗].  This is the efficient frontier. 

  



 

 
 

 
 

 

Results. 

An efficient frontier was computed for the example graphs in Figure 1.  The results are in Figure 

2 and 3. 

 

Figure 1: Example Graph Topologies on 6 Nodes. 

 

Figure 2.  Efficient Frontier For Graphs in Figure 1 with M=0 



 

 
 

 
 

 

 

Figure 3.  Efficient Frontier For Graphs in Figure 1 with M=1 

 

As can be seen, the complete graph always dominates but other graphs do show dominating 

effects as well.  These results show how stability margin can be traded for convergence rate and 

vice versa.  For the zero-order information loop and all strongly connected communication 

graphs, efficient frontiers have been found analytically, while for the first-order information loop 

and undirected communication graphs, they have been evaluated numerically. The result that the 

complete graph has the highest convergence rate and the best efficient frontier can be related to 

the fact that the normalized adjacency matrix of the complete graph has the minimal number of 

distinct eigenvalues. In other words, the more distinct eigenvalues the normalized adjacency 

matrix of a graph has, the more constraints on control gains in the information loop are imposed, 

and consequently, the lower maximal convergence rate and maximal stability margin are. The 

complete graph is the primal choice for vehicle communication. However, if for some reason, it 

cannot be afforded, numerical results show that the “star” graph is the next best choice. 
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